Dimension Reduction for Linear Separation with Curvilinear Distances

نویسندگان

  • Jonathan Winkley
  • Ping Jiang
  • Alamgir Hossain
چکیده

Any high dimensional data in its original raw form may contain obviously classifiable clusters which are difficult to identify given the high-dimension representation. In reducing the dimensions it may be possible to perform a simple classification technique to extract this cluster information whilst retaining the overall topology of the data set. The supervised method presented here takes a high dimension data set consisting of multiple clusters and employs curvilinear distance as a relation between points, projecting in a lower dimension according to this relationship. This representation allows for linear separation of the non-separable high dimensional cluster data and the classification to a cluster of any successive unseen data point extracted from the same higher dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvilinear Distance Analysis versus Isomap

Dimension reduction techniques are widely used for the analysis and visualization of complex sets of data. This paper compares two nonlinear projection methods: Isomap and Curvilinear Distance Analysis. Contrarily to the traditional linear PCA, these methods work like multidimensional scaling, by reproducing in the projection space the pairwise distances measured in the data space. They differ ...

متن کامل

Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis

Dimension reduction techniques are widely used for the analysis and visualization of complex sets of data. This paper compares two recently published methods for nonlinear projection: Isomap and Curvilinear Distance Analysis (CDA). Contrarily to the traditional linear PCA, these methods work like multidimensional scaling, by reproducing in the projection space the pairwise distances measured in...

متن کامل

Extraction of intrinsic dimension using CCA - Application to blind sources separation

$EVWUDFW A general-purpose useful parameter in data analysis is the intrinsic dimension of a data set, corresponding to the minimum number of variables necessary to describe the data without significant loss of information. The knowledge of this dimension also facilitates most non-linear projection methods. We will show that the intrinsic dimension of a data set can be efficiently estimated usi...

متن کامل

Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes

MOTIVATION Nonlinear small datasets, which are characterized by low numbers of samples and very high numbers of measures, occur frequently in computational biology, and pose problems in their investigation. Unsupervised hybrid-two-phase (H2P) procedures-specifically dimension reduction (DR), coupled with clustering-provide valuable assistance, not only for unsupervised data classification, but ...

متن کامل

Analysis of linear and nonlinear dimensionality reduction methods for gender classification of face images

Data in many real world applications are high dimensional and learning algorithms like neural networks may have problems in handling high dimensional data. However, the Intrinsic Dimension is often much less than the original dimension of the data. Here, we use fractal based methods to estimate the Intrinsic Dimension and show that a nonlinear projection method called Curvilinear Component Anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011